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Summary 

The potential due to a distribution of sources or normal dipoles on a flat quadrilateral panel is evaluated for the 
cases where the density of the singularities is constant, linear, bilinear, or of arbitrary polynomial form. The 
results in the first two cases are consistent with those derived previously, but the present derivation is considered 
to be simplified. In particular, the constant dipole distribution is derived from a geometric argument which 
avoids direct integration; this derivation applies more generally on a curvilinear panel bounded by straight 
edges. 

Also presented are multipole expansions for the same potentials, suitable for use when the distance to the 
field point is substantially larger than the panel dimensions. Algorithms are derived to evaluate the coefficients 
in these expansions to an arbitrary order. 

1. Introduction 

A wide variety of practical problems in hydro- and aerodynamics may be solved using 
boundary-integral methods, with the velocity potential constructed from distributions of 
sources and normal dipoles on each panel of the discretized boundary surface. If the 
strength of the singularities is assumed constant on each panel, and the boundary-integral 
equation is solved by collocation, a linear ,system of algebraic equations results with 
canonical matrix elements given by unit-strength distributions on each panel. These must 
be evaluated at appropriate nodal points on every panel. With N panels used to describe 
the body surface, there are N × N matrix elements for both the source and normal dipole. 
Typical three-dimensional solutions require on the order of 1000 panels, with O ( 1 0  6) 

matrix elements to be evaluated. The computation of these elements is an important task 
in the numerical solution. 

Hess and Smith [1-3] introduced this general technique, using constant-strength 
distributions on quadrilateral flat panels, and derived closed-form expressions from the 
matrix elements by evaluating analytically the surface integrals over each panel. One 
concept stressed in the first two references is that a surface integral over the quadrilateral 
panel (or more generally over a polygonal panel with an arbitrary number of sides) can be 
expressed as a superposition of integrals over a set of infinite parallel strips. Each strip is 
defined by one side of the panel, and the value of the corresponding integral depends only 
on the coordinates of that side. This decomposition is effective in the algorithmic sense, 
since the computations can be performed in sequence for each side. In a simpler and more 
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direct approach followed by Hess and Smith [3], the surface integral for the source 
distribution is reduced to a line integral around the perimeter of the panel, with the same 
implication that the contribution from each side can be treated independently. 

In subsequent extensions linear distributions have been used on triangular panels to 
provide a more continuous description of the solution. The appropriate matrix elements 
for these distributions have been derived by Yeung [4] and Webster [5]. However the 
fundamental connections which exist between their results and those obtained by Hess 
and Smith do not appear to be appreciated. 

A more unified derivation including and extending these earlier analyses is the 
objective of the present paper. First, it will be shown that the potential due to a normal 
dipole distribution with constant moment can be derived from an appropriate sum of 
surface integrals over infinite sectors, correspoiading to each vertex of the panel and 
bounded by semi-infinite extensions of the adjacent sides of the panel. In this way the 
dipole potential may be expressed as a sum of terms depending only on the properties of 
each vertex, as opposed to each side. The latter feature could be deduced directly from the 
result of Hess and Smith, simply by regrouping of the pairs of terms in their equations. 
However, the derivation used here employs the Gauss-Bonnet theorem to evaluate the 
dipole potential directly, in terms of the included angle of each vertex projected on a 
plane normal to the axis between the vertex and the field point. In this manner the 
analysis associated with direct integration over the panel surface can be avoided. An 
additional feature of the present derivation is that it is valid for an arbitrary curvilinear 
panel surface bounded by straight segments. 

In view of the equivalence between the constant dipole distribution and a vortex 
filament surrounding the panel, this method can also be used in lifting-surface applica- 
tions to derive the velocity potential of a vortex lattice. 

The corresponding result for a source distribution of constant strength on a flat panel 
is obtained by integration from the dipole distribution, and involves only one elementary 
integral. Although the approaches differ, this portion of our analysis appears algebraically 
similar to that presented by Hess and Smith [3]. 

For the linear distributions of singularities two canonical integrals are considered for 
the source potential, and evaluated with recourse to only one elementary integral. The 
corresponding results for the dipole are obtained in a similar manner. The potentials for 
singularities of constant strength are utilized to simplify the analysis. The same approach 
is used to derive a bilinear source distribution, which provides a representation of 
continuous singularity distributions on quadrilateral panels. 

A more general recursive scheme is developed in Section 5 to evaluate source and 
dipole distributions of arbitrary higher-order polynomial form. 

Section 6 is devoted to a far-field multipole approximation of the above results. The 
efficiency of such an approach is emphasized by Hess and Smith [1,2] with a point source 
and quadrupoles used in place of the constant-strength source distribution when the field 
point is sufficiently far from the panel. The corresponding strengths of these point 
singularities are the area and second moments, respectively, of the panel. (The dipole 
terms proportional to the first moments are eliminated by locating the point singularities 
at the centroid of the panel.) We extend this technique to include linear and higher-order 
distributions, and we retain additional terms in the multipole expansions proportional to 
the third and fourth moments of the panel area. The latter extension increases the 
accuracy of the far-field approximation, and extends its domain of application. Al- 
gorithms are described for computing arbitrary moments of each panel. 
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2. Dipole distribution of constant density 

A flat quadrilateral panel will be assumed for the analysis, following the convention of 
Hess and Smith. It may be assumed without loss of generality that the panel is in the 
plane z = 0, with vertices at the points x = f , ,  y = Tt,,. The vertices are numbered in 
clockwise order, as shown in Figure 1, and the side of length s,, is denoted by the integer 
of the vertex associated with the first end point of that side. The field point is at an 
arbitrary position P with coordinates (x, y, z). 

The potential at P due to a distribution of normal dipoles with density - 4 ~  over this 
panel is 

d P = f f [ ~ ( 1 ) ] . ~ = o  d~d~=-ff[~z(1)].~=o d~d~ 

(2.1) 

where the surface integrals are over the domain of the panel. From reciprocity, the last 
form of this equation can be associated with the flux through the panel due to a source of 
strength - 4 w  at the point P. It follows that the value of (2.1) is equal to the solid angle 
of the panel, as viewed from the field point P, with the algebraic convention that the sign 
of the solid angle is the same as z. 

First we note from elementary plane geometry that the solid angle of the panel can be 
related to independent properties of each vertex. For this purpose four sectors are defined 
with respect to the corresponding vertices, as shown in Figure 2, such that the difference 
between the domains of the first and second sectors, plus the corresponding difference 
between the third and fourth sectors, is the domain of a quadrilateral. If the value of the 
surface integral over each sector, with the same integrand as (2.1), is defined by In, it 
follows that 

• = I  1 --•2 + 13 -- 14. (2.2) 

Yl ( ,Cj ,~ ) 

X 

((2, ~z ) 

co, 

( f3 ,  ~3) 

Figure 1. Definition sketch of the quadrilateral panel. 
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Figure 2. The four sectors for the integrals I n. 

In accordance with the interpretation following (2.1), each of the integrals in (2.2) is equal 
to the solid angle of the corresponding sector referred to the point P. 

A more direct and useful result follows from the Gauss-Bonnet theorem in differential 
geometry: if the quadrilateral panel is projected onto the unit sphere, with center at the 
field point, the area circumscribed by its boundary contour (and hence the solid angle) is 
equal to the sum 

=/31 +/3 2 +/3 3 + 13 4 - 2~r. ( 2 . 3 )  

Here fin is the included angle at each vertex on the sphere. For a triangular panel, the last 
term in (2.3) is replaced by -~r, and for a polygon with N sides by - ( N -  2)~r. 

The included angle of a vertex may be measured in the tangent plane on the sphere, or 
in any plane perpendicular to the vector between the field point and the vertex. It is 
sufficient to consider a single vertex, say n = 1. To simplify the following equations it will 
be assumed that this vertex is at the origin; subsequently the coordinates (x, y)  of the 
field point P will be replaced by the differences ( x -  (n, Y -  ~/n) to provide the more 
general result for a vertex at (~n, ~/n). The essential task is to determine the included angle 
between two radial lines in the plane z = 0, with polar angles 04 and 01, as viewed from a 
point P with arbitrary coordinates (x, y, z). Here 0 n is defined as the polar angle of the 
vector from the vertex n to the vertex n + 1. 

Spherical coordinates may be used in a straightforward manner. If the coordinates of P 
are given by 

x + iy  = R sin q~ e i'~, (2.4) 

z = R c o s  ,t,, ( 2 . 5 )  

one may rotate first about the z-axis through an angle a, and then through an angle 
about the axis normal to 0z and 0P, to obtain new Cartesian coordinates (u, v, w) where 
P is at (0, 0, R). In this transformation the projections on the u, v-plane of the two radial 
lines defined above, in the x, y-plane, are the rays 

u c o s  4 c o s ( 0 .  - 
- =  n = 1 ,  4 .  ( 2 . 6 )  
v sin(0 n - a)  ' 
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The included angle fll between these rays is therefore given by the expression 

[tan'01 °' l [tan'0  °' l fil = tan-1 - tan- I  
cos ~ cos ~ ' 

(2.7) 

An alternative form can be derived from a different pair of rotations, in terms of the 
spherical coordinates such that 

x + iz = R sin 8 e i~, (2.8) 

y = R cos 8. (2.9) 

Rotating first about the y-axis through the angle +, and then about the axis normal to 0y 
and 0P through the angle 6, new Cartesian coordinates (u, v, w) follow where the 
coordinates of P are (0, R, 0), and the projections of the rays in the x, y-plane on the 
w, u-plane are along the lines 

u = cos 0 cos + cos 6 - sin 0 sin 6 (2.10) 
w - c o s  0 sin g, 

With this transformation, the included angle is given by 

[ t a n 0 1 s i n 6 - c ° s + c ° s 6 ]  [ 
i l l = t a n  1 s i n ~  - t a n - 1  

tan 04 sin 6sin:- ~c°s g, cos 6 ] 

[tan01 x2+z2' l Itan0  x2+z2  
= tan-  1 R z  - t an-  1 R z  " (2.11) 

Since the arctangent is not unique, the correct branch must be determined in (2.7) or 
(2.11). The intent is to evaluate the solid angle ~, a quantity between -2Tr and 27r with 
the same sign as z. For a normal quadrilateral with four concave vertices the correspond- 
ing angles fin are between 0 and Tr in absolute value. For z > 0 the denominators of (2.11) 
are positive, and with the arctangent defined by its principal branch, between - ~ r / 2  and 
+~r/2, it is not difficult to show that (2.11) will have the same sign as the difference 
tan 01 - tan 04 irrespective of the coordinates (x, y, z). For a normal quadrilateral, two 
of these differences are positive, and two are negative. Thus for two of the four integrals it 
is appropriate to add ~r to (2.11) to determine the solid angle. Since this addition of 2~r is 
cancelled by the last term in (2.3), (2.3) can be replaced by the sum of the four differences 
(2.11). Since (2.11) is an odd function of z, the restriction z > 0 can be removed. 

For a quadrilateral with one convex vertex, only one of the four differences (2.11) is 
negative, but since the solid angle of the convex vertex is between 7r and 2~r, the 
application of (2.11) without any correction term in (2.3) is still correct. Thus in all cases 
the total solid angle of the quadrilateral is the sum of the four differences (2.11) provided 
the comPutation of the arctangent is restricted to the principal branch. In the case of a 
triangle, one of the three vertices will have a negative value for (2.11), which again is 
conveniently cancelled by the appropriate factor ~r, and (2.11) can be summed for the 
three vertices of a triangle without additional corrections. 

The decomposition of the panel in terms of its vertices is convenient from the 
standpoint of the derivation above, but for computational purposes where the source and 
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dipole potentials are evaluated together, it is more efficient to pair the functions in (2.7) 
or (2.11) which are common to each side. First the tangents in (2.11) are expressed in 
terms of ratios of the vertical and horizontal components of the sides, 

tan 01 7 2 - 7 1  _ 67h (2.12) 
~ 2 - ~ 1  a~l ' 

t a n 0 4 -  71 - 7 4  _ 674 (2.13) 
~1 ~4 ~4"  

If (2.11) is substituted in (2.3), and the eight terms in this sum are paired in accordance 
with each side, it follows that 

n ~==4 { ~7n[(X__~n)2..[_Z2] _~n(X_~nl (Y_7n)  
~b = S "  t a n -  1 

R . z ~ .  

- t a n - '  8 7 . [ ( x -  ( .+1) z + z 2 ]_R~+,~_~.-8~.(x- ~ . + l ) ( y - n . + l )  } (2.14) 

where the cyclic convention applies. The pair of arctangents in this expression can be 
combined by using the trigonometric addition formulae in the form 

t a n - l ( s l / q )  - tan-l(s2/c2) = tan 1(s3/c3) (2.15) 

where s. and c. are the respective factors in the numerator and denominator of each term 
in (2.14), for n = 1, 2, and s 3 and c 3 are given by the addition formulae for the sine and 
cosine: 

$3 = $1C2 -- $2Cl, (2.16) 

c3=clc 2 + sis 2. (2.17) 

If this algorithm is used, the last arctangent in (2.15) may be evaluated on the assumption 
that it is in the interval (-~r ,  ~r), without considering the separate arguments of the 
arctangents on the left side of (2.15). 

The result (2.14) is identical to that of Hess and Smith. The correct numerical 
interpretation of (2.7) is more difficult, and this function is not well-conditioned when the 
field point is directly above or below a vertex. Thus (2.14), based on (2.11), is a preferable 
form for computations. 

While the analysis above is based on the assumption of a flat panel, situated in the 
plane z = 0, the final results (2.7) and (2.11) are valid more generally for any curvilinear 
panel bounded by straight edges, with the dipole potential (2.1) redefined in terms of the 
local normal derivative on the panel surface. In this case the contribution from each 
vertex must be evaluated separately, in a local coordinate system which is oriented in 
terms of the plane sector defined by the vertex and adjacent edges, such that the latter are 
in the plane z = 0. The nonuniqueness of the arctangents must be resolved with respect to 
the relationship between the panel surface and the field point P, to ensure the correct 
jump of the potential when P crosses the surface. 
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3. Source distribution of constant strength 

The potential of a source distribution of constant strength -4~r over a flat panel can be 
expressed in a form analogous to (2.1) by the surface integral 

q~= f f  d~__d~ (3.1) 

Comparison with (2.1) indicates that • = -O' t ' /Oz,  and since both functions vanish at 
infinity, the source potential can be expressed by the integral 

f~ q ~ = f ~ O d z = -  , z d O - z O  (3.2) 

where the second form follows by partial integration. The coordinates (x, y)  are constant 
in these integrals, and in subsequent evaluations of the differential dO. 

If (2.3) and (2.7) are substituted for the dipole potential in (3.2), eight integrals of the 
following form must be evaluated: 

 ([tan' tan,0 o) ]) I = - [  z d  J. . C O S  

z cosZq~ d(sec ~). 
= - t a n ( 0 -  a ) f ,  cos2~,+ t a n 2 ( 0 -  cQ (3.3) 

(Note that ~ is the only angle dependent on z.) Using (2.5), and evaluating the last 
differential in (3.3) in terms of the variable R = (x 2 +y2 + z2)1/2 = (p2 + z2)1/2 for fixed 
values of the projection p of R on z = 0, (3.3) can be expressed in the form 

dR 
I=oZ t a n ( 0 - a ) f  ~ [ l + t a n 2 ( 0 - a ) ] R 2 - f  

- ½0 s i n ( 0 - a ) l o g  + 0 cos(0 a) ' (3.4) 

The eight integrals may be combined in four pairs in accordance with each side of the 
panel. For the side 1, shown in Figure 3, two contributions of the form (3.4) with opposite 
signs are associated with the two vertices, and the total contribution for this side is 

[R1 - 0 1  c o s ( 0 1 - a l )  ] 
-½Pl  s i n ( 0 1 - a l ) l o g  R I + P l  c o s ( 0 1 - a l )  

 2c0 ,0, 02)] 
+½02 s i n ( 0 1 - a 2 )  log +02 cos(0, c%) " (3.5) 

Here 01 exp(ial) and 02 exp(ia2) are the complex vectors from the corresponding vertices 
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(x,y,o) 

I 

Figure 3. Sketch of the parameters in (3.5-3.7). 

tO the point  (x, y, 0), and R 1 and R 2 are the radial distances f rom these vertices to the 
field point  P. The complex vector of the side, of  length s 1, can be defined by 

Sl ei°~ = Pl ei~ - P2 ei~2. (3.6) 

Rotat ing the polar coordinates to coincide with this side, it follows that 

SI =01 e i (a l -00-02 ei(a2-0~) 

- (u~ - ivy) - (U1 - iV1). (3.7) 

Here (ul, - V l )  and (U~, - V~) denote the real and imaginary parts of the two vectors, in 
the rotated coordinate system. (This notat ion is necessary in order to generalize (3.7) to 
the n ' t h  side without recourse to double subscripts.) 

Since the sum on the right side of (3.7) must  be real, V~ = vl, and the two terms in (3.5) 
can be combined in the form 

+ . ,)  
½v 1 log + U1)(R --ul ) -o1Q 1 (3.8) 

where 

1 (R2  - u 1 ) ( R l  + ul )  
Q'  = 2 log (R  2 + U1)(R, _/,/1) 

R1 +Ul R 2 -  U1 _ logRl  +R2+sl 
= " log R - - - ~  ~ - log R1 _ ua R1 + R2--S1 (3.9) 

The alternative forms shown in (3.9) follow from the identities R~ - u~ = R 2 - U~ 2 and 
s~ = u 1 - U1. Hess and Smith [3] recommend the last form of (3.9) for computa t ions  since 
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the arguments of the other logarithms are indeterminate along the extensions of the side. 
Note that (3.9) is logarithmically infinite when the field point approaches the side, but the 
factor v in (3.8) vanishes in the same limit. Thus the source potential is finite on the sides 
of the panel, but its gradient is unbounded. 

With the factor v~ expressed in terms of the Cartesian coordinates, (3.8) may be 
summed over the four sides and substituted in (3.2) to yield the source potential in the 
form 

~t' = Y" onQ ~ - z~ 
n = l  

4 Rnq'-Rn+lZSn-z~. (3.10) = ~-" [ (x-~n)s inOn-(Y-~n)c°sO']  I°g'R-'7+R,+ l s~ 
n = l  

The same result is derived by Hess and Smith ([3], eq. 4.1.13)). The three velocity 
components can be derived by differentiation of (3.10) with respect to the corresponding 
Cartesian coordinates, and it is not difficult to confirm that O't'/Oz = -~ .  

4. Linear and bilinear distributions 

In order to extend the preceding analysis to include a linear distribution of sources and 
dipoles on each panel we consider two integrals, analogous to (3.1), and defined by 

The first integral can be reduced in the following manner: 

4[ X = f f ( ~ - x ) d~ d~ + x q  ~ 
d d  r 

Jr 
= ff ~ d ~  aT + x4Z = ~ r  d~l + xXt ' (4.2) 

where 't' is the (constant-strength) source distribution evaluated in Section 3. Similarly, 

= - ~  r d~ +y't'. ,t,, (4.3) 

Since the vertices and sides are defined in a clockwise sense, opposite to the convention of 
the contour integrals in (4.2) and (4.3), these results can be expressed in terms of integrals 
over each side of the panel, in the common form 

('I'i,i) = ( ; ) , I ,T  fi=(sinOn)frdl.1 cos O n .~,, (4.4) 
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The analogous dipole distributions may be defined in a similar manner: 

(~,x) = zSS (<~,q) d~ d'17 r 3 

°.)is{l) 4 ( sin 

= d~q-ZZn=l 1 cOS0n ,, r dl. 
(4.5) 

The last integrals in (4.4-4.5) can be evaluated by defining a local coordinate s, equal 
to the distance along each side. It follows that 

£ {") .6) fs, r ±' d l =  "[s 2 -  2u.s + R 2] _+,/2 d s =  Q. 

where u. and Q. are defined by (3.7-3.9), and 

P.=½[u.R.-U.R.+, +(R2.-u2)Q.]. (4.7) 

With these functions substituted for the integrals in (4.5-4.6), the linear-distribution 
integrals are evaluated in terms of the expressions 

(;) 4 (.0.) 
~,, = ,I, • Z L cos 0. n=l 

( )  (;)  4 sin 0n ) 
;-; = d~+z Z Q, cosO, (4.9) 

- , ' / = 1  

These results may be supplemented by a corresponding bilinear source or dipole 
distribution to permit satisfying nodal conditions at the four vertices of a quadrilateral. 
The bilinear source potential is defined by 

r r>  d~ dn 
q ' - = M  ~n r- 

= f f  (~- x)(~-y) d~ rd~ + Xq, v + yff%_ (4.10) 

Following a similar procedure to that carried out above, the last double integral in (4.10) 
may be evaluated as follows: 

f f  ( e - x ) ( , -  y) d~rdO - f f  (~-x)-~de d~ 

4 

o.ff' = ~] cos r(~.-x+s cos 0.) ds. (4.11) 
n=l 



Using (4.6-4.7) and the relation 

S"d r 3 ), ~"(s-u, )rds=13fo ( ) = ½ ( R , 3 , + I - R :  

it follows that 

4 

1 3 On]. ~,.=xq',.+yqZ~-xy't'+ E cos O,,[-v,P, sin 0,, + 3 ( R , , + , -  R,3,) c o s  

n = l  

The corresponding result for the bilinear normal dipole distribution is 

4 

O,y=Xa#r+yOx-xyO# +z ~.. cos O.[v.Q. sin 0 , , - ( R , , + , -  R,,) cos 0.]. 
n = l  

123 

(4.12) 

(4.13) 

(4.14) 

5. Higher-order distributions 

Higher-order polynomial distributions may be considered as generalizations of the 
preceding results. To simplify the notation we consider the integrals 

( .... (r') 
= f f ( ~ - x ) m ( ~ l - y )  ~ r_ 3 d~aT (Pm n 

(5.1) 

which can be used in conjunction with the binomial theorem to evaluate the double 
integrals in (4.1) and (4.5) with arbitrary positive powers of the coordinates (~, 7). By 
combining the appropriate integrands, it is straightforward to verify the relations 

= t m  + d, , ,  (5.2) 

_, y),,+,] 
qSm.n+2 = (n + 1)• ..... - f f ~ [ r  (~--x)m(tl - d~ d'q, (5.3) 

0 [r l(t~-x)m(~-y)"+']}d~d,q. +~ (5.4) 

The surface integrals in (5.2-5.4) can be reduced to contour integrals, and evaluated in a 
manner similar to the corresponding results in Sections 3 and 4. The following procedure 
may then be adopted to evaluate the higher-order distributions (5.1): 

(1) Evaluate the elements with (m, n) equal to (0, 0), (0, 1), (1, 0), (1, 1) from the 
results in Sections 2-4. 

(2) Evaluate the elements q~,~n with increasing values of (m, n) recursively from 
(5.2, 5,3), respectively. 
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(3) Evaluate the corresponding elements +,, ,  from (5.4). 
(4) Repeat steps 2 and 3 as necessary to evaluate the desired elements. 

The linear and bilinear dipole distributions (m = 1 and /o r  n = 1) may also be 
evaluated from this procedure, with the first terms on the right side of (5.2) and (5.3) 
deleted. Similarly, all of the source distributions including the constant, linear and 
bilinear cases may be evaluated from the corresponding dipole results using (5.4). 
However, the analysis required is somewhat more complicated than the derivations of the 
same integrals carried out in Sections 3 and 4. 

6. Multipole expansions 

The exact expressions described in the preceding sections are straightforward to compute, 
but for each side (or vertex) three transcendental functions must be evaluated including 
the square-root function for R, ,  the logarithmic function which occurs in the source 
potential, and the arctangent in the dipole potential. Moreover, there is some loss in 
accuracy of the algorithms based on (2.11) and (3.10) when the field point is very far 
away from the panel. 

To overcome the latter problem, and provide a more efficient approach in terms of 
computing time, it is desirable to replace the exact expressions by multipole approxima- 
tions when the field point is sufficiently far from the panel. This alternative is emphasized 
by Hess and Smith [1-3]. 

Appropriate far-field expansions for (2.1) and (3.1) can be derived from Taylor series 
involving products of partial derivatives of 1/r  with appropriate moments of the panel 
area. Thus the source potential can be expanded in the form 

q.f = f f r  -1 d~ d71 

E (_)m+. 0,.+° mln ~------(-Im" ( x 2 + y 2 + z 2 )  1/2 (6.1) 
m = 0 n = 0  " " Oxm Oyn 

where 

(6.2) 

is the corresponding moment of the panel about the origin. This series is convergent 
provided the field point is farther from the origin than any point on the panel. It can be 
truncated at a finite order (m + n), provided the distance to the field point is sufficiently 
large to ensure the desired degree of accuracy. 

The corresponding expansion for the dipole potential (2.1) is identical to (6.1) except 
for an additional derivative with respect to the coordinate z. The expansions for the 
higher-order distributions considered in Sections 4 and 5 are the same, except that the 
order of the moment Ira, , is incremented by the corresponding integer powers of the 
distribution. 

Note that only one evaluation of the square-root function is required in (6.1), to 
evaluate the (reciprocal) distance between the origin and the field point, since this is a 
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common factor in all of the derivatives. Thus the computational burden associated with 
transcendental functions is reduced from 12 to 1 per panel, when the multipole expansion 
is used in place of the closed-form results in Sections 2-5. 

In the implementation described by Hess and Smith, (6.1) is truncated after the terms 
m + n = 2, and the terms proportional to first moments are avoided by locating the origin 
at the centroid of the panel. Thus a total of four terms are included in (6.1), and in the 
corresponding approximation for the dipole potential. If this procedure is extended to 
include third- and fourth-order moments, a total of 13 terms are involved, but smaller 
values of the distance to the field point can be accommodated with the same degree of 
accuracy. Thus the fourth-order truncation provides an effective intermediate procedure 
to implement between the second-order multipole expansion and the exact formulae. 

The moments (6.2) should be evaluated initially, for each panel, and stored for 
subsequent use with each appropriate field point. These pre-computed moments may be 
multiplied by the first factor in the double-series (6.1) to minimize the subsequent 
operations. 

An algorithm for evaluating the moments (6.2) up to an arbitrary order can be 
developed starting with the y-integration: 

1 
im n =ff m¢ d~ d~ n + 1 ~ ~m[,(~)]  l d~ 

nq~ 

_ I ~ f~ik+l~m[~(~)],+, d~. (6.3) 
n + l  k=l 

The subsequent procedure is illustrated for the first term ( k =  1) over the side 1. 
Integrating by parts, the contribution to (6.3) is 

im(,, 1 f~i2d~m+lr]n+ 1 
" (rn + 1)(n + 1) 

1 [.'.m+l n + l  __ ~ n + l ~ + l )  tan 0 a J~f~2~m+17/" 
(m + a)(n + 1) [~2 7/2 -- m +----T ~1 d~ 

_ 1 [~m+l ,+1 __ ~,~+lrt,~+l ) n tan 01 I(') (6.4) 
( m + l ) ( n + l ) ~  2 72 m + l  "m+,,, 1. 

The last result provides a recursion relation between the different moments of the same 
order, on the diagonal m + n = constant. A starting value for n = 0 is obtained by 
evaluating the last integral in (6.4), 

i . ( , )_ 1 [tm+ 1 tan01 [ t  m+2 t~ '+2) (6.5) 
0 m + l  ~ 2 T / 2 - - ~ n + I T / 1 )  ( m + l ) ( r n + 2 ) ~  2 - - 

However, this scheme is ill-conditioned on a side where the tangent approaches infinity. 
As an alternative, we modify the recursion in (6.4) by solving for the moment in the last 
term, and after incrementing the indices it follows that 

cot 01 ~m__n+2 f~,7/~+2 m cot 01 /m-l,n+l" (6.6) 
I(-ml") = (n + l ) (n  + 2) ( 2 "q2 - -  ) /7 "4- ] 
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The starting value for rn = 0 is obtained by deleting the last term in this equation. A 
general recursion scheme is then obtained by using (6.4-6.5) or (6.6), respectively, 
according as I tan 01 is less than or greater than one. 

7. Applications and extensions 

The potentials which have been evaluated in the preceding sections are fundamental 
matrix elements of three-dimensional panel methods based either on an assumed source 
distribution, or on the solution of Green's theorem for the velocity potential. 

From the standpoint of practical implementation, the efficient evaluation of these 
potentials is essential if the number of panels used to represent a body is large. A 
carefully-developed subroutine which evaluates the constant-strength potentials ~t' and dp 
using (2.14) and (3.10) in single precision requires about 1.5 millisecond on a VAX 
11/750. The alternative multipole approximation based on (6.1) and including moments 
of order two requires about 0.2 ms. on the VAX. The extended multipole approximation 
with moments up to order four requires about 0.4 ms, and therefore provides an effective 
algorithm for intermediate distances to the field point. 

Possible extensions of this analysis include a more comprehensive treatment of 
curvilinear panels, and the development of efficient algorithms for integrating these 
potentials in the Galerkin sense over an arbitrary panel. 

With respect to curvilinear panels, we have shown that the potential for a normal 
dipole distribution of constant moment can be readily derived, subject only to the 
restriction that the panel boundaries are straight segments. This result is independent of 
the precise panel shape. The corresponding results for the source distribution, and for 
higher-order distributions of both types, are expected to be more complicated, and to 
depend on the specific description of the panel surface. 

The solution of boundary-integral equations by the Galerkin technique requires a 
second integration, over each panel of the body, with appropriate polynomial weight 
functions corresponding to the distributions of the singularities themselves. It appears 
that this second integration must be performed numerically, and special attention is 
required when the second panel is identical or adjacent to the first. 
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